### International Journal of Applied and Advanced Scientific Research

Impact Factor 5.255, Special Issue, February - 2017

International Conference on Advances in Theoretical and Applied Mathematics – ICATAM 2017
On 14th February 2017 Organized By

Madurai Sivakasi Nadars Pioneer Meenakshi Women's College, Poovanthi, Tamilnadu



### A NOTE ON NEIGHBOURHOOD CONTRACTION IN GRAPHS

M. Bhuvaneshwari\*, Selvam Avadayappan\*\* & M. Pavithra Devi\*\*\*

Research Department of Mathematics, Virudhunagar Hindu Nadars' Senthikumara Nadar College, Virudhunagar, Tamilnadu

Cite This Article: M. Bhuvaneshwari, Selvam Avadayappan & M. Pavithra Devi, "A Note on Neighbourhood Contraction in Graphs", International Journal of Applied and Advanced Scientific Research, Special Issue, February, Page Number 69-74, 2017.

#### **Abstract:**

Let G be a graph and let v be any vertex of G. The open neighbourhood of a vertex  $v \in V$  is defined as  $N(v) = \{u \in V \mid uv \in E\}$ , that is, the set of vertices adjacent to v. Then the neighbourhood contracted graph  $G_v$  of G, with respect to the vertex v is the graph with the vertex set V - N(v), where two vertices u, w are adjacent in  $G_v$  if either w = v and u is adjacent to any vertex of N(v) in G or  $u, w \notin N[v]$  and u, w are adjacent in G. In this paper, we prove some results on neighbourhood contraction of some special families of graphs. Also we construct v non isomorphic graphs with isomorphic neighbourhood contracted graph.

Key Words: Neighbourhood Contraction, Splitting Graph & Cosplitting Graph.

#### 1. Introduction:

The graphs considered in this paper are finite, undirected and connected. Unless or otherwise stated, we consider only simple graphs. For notations and basic definitions, we refer [2]. Let G(V,E) be a graph. Order of G is denoted by n(G). A full vertex v is a vertex which is adjacent to every other vertices in G. That is, v is a full vertex, if d(v) = n(G) - 1. Distance between any two vertices u and v in a graph G is the length of a shortest path between them. It is denoted by d(u,v). The neighbourhood of a vertex  $v \in V$  is defined as  $N(v) = \{u \in V/uv \in E\}$ , that is, the set of vertices adjacent to v is called the neighbourhood of a vertex v. Or, more precisely,  $N(v) = \{x \in V/d(x,v) = 1\}$  in G. In general,  $N_k(v)$  is defined as  $N_k(v) = \{u \in V(G)/d(u,v) = k\}$ , k = 1,2,3... For a subset  $V_1$  of V, the induced subgraph induced by  $V_1$  is denoted by  $G[V_1]$ . A clique C is a subset of vertices such that G[C] is complete. The clique number  $\omega(G)$  of a graph G is the number of vertices in a maximum clique in G. The corona  $G_1 \circ G_2$  of two graphs  $G_1$  and  $G_2$  is defined as the graph obtained by taking one copy of  $G_1$  which has  $p_1$  vertices and  $p_1$  copies of  $G_2$  and then joining the  $i^{th}$  vertex of  $G_1$  to all the vertices in the  $i^{th}$  copy of  $G_2$ . The concept of neighbourhood contraction was introduced by S.S. Kamath and Prameela Kolake[3]. The Neighbourhood contracted graph  $G_v$  of G, with respect to the vertex v is the graph with the vertex set V - N(v), where two vertices  $u, w \in V - N(v)$  are adjacent in  $G_v$  such that one of the following conditions holds:

- 1. W = V and U is adjacent to any vertex of N(v) in G.
- 2.  $u, w \notin N[v]$  and u, w are adjacent in G.

For example, the graph  $\,G_{\scriptscriptstyle \nu_1}\,$  of  $\,G\,$  is shown in Figure 1.

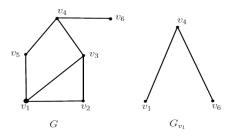


Figure 1

The concept of splitting graph was introduced by Sampath Kumar and Walikar[4]. The graph S(G) obtained from G by adding a new vertex W for every vertex  $V \in V$  and joining W to all vertices adjacent to V in G is called the *splitting graph* of G. For example, a graph G and its splitting graph S(G) are shown in Figure 2.

# International Journal of Applied and Advanced Scientific Research

Impact Factor 5.255, Special Issue, February - 2017

International Conference on Advances in Theoretical and Applied Mathematics – ICATAM 2017
On 14th February 2017 Organized By

Madurai Sivakasi Nadars Pioneer Meenakshi Women's College, Poovanthi, Tamilnadu

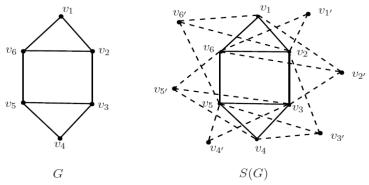


Figure 2

When we contract a vertex  $\,^{\,\mathcal{V}}\,$  in a splitting graph  $\,^{\,\mathcal{S}}(G)$ , the resultant graph is denoted by  $\,^{\,\mathcal{S}}(G)_{\scriptscriptstyle V}$ . Note that  $\,^{\,\mathcal{S}}(G_{\scriptscriptstyle V})$  denotes the splitting graph of the contracted graph  $\,^{\,\mathcal{G}}_{\scriptscriptstyle V}\,$  of  $\,^{\,\mathcal{G}}$ . For example, the graph  $\,^{\,\mathcal{G}}_{\scriptscriptstyle V_1}$ ,  $\,^{\,\mathcal{S}}(G_{\scriptscriptstyle V_1})\,$  and  $\,^{\,\mathcal{S}}(G)_{\scriptscriptstyle V_1}$  for the graph in Figure 2 are shown in Figure 3.

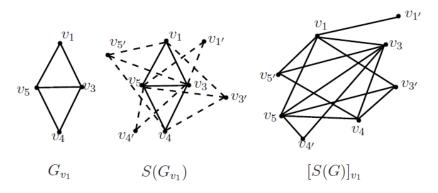
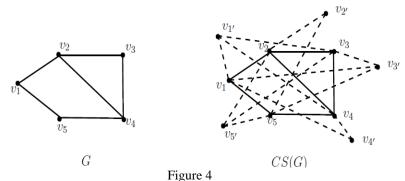


Figure 3

The concept of cosplitting graph CS(G) was introduced by Selvam Avadayappan and M. Bhuvaneshwari[1]. The cosplitting graph CS(G) obtained from G, by adding a new vertex W for each vertex  $v \in V$  and joining W to those vertices of G which are not adjacent to V in G. For example, a graph G and its cosplitting graph CS(G) are shown in Figure 4.



In a similar way,  $[CS(G)]_{\nu}$  denotes the neighbourhood contracted graph with respect to  $\nu$  in a cosplitting graph CS(G). Note that  $CS(G_{\nu})$  denotes the cosplitting graph of the contracted graph  $G_{\nu}$  of G. For example, the graph  $G_{\nu_1}$ ,  $CS(G_{\nu_1})$  and  $[CS(G)]_{\nu_1}$  for the Figure 4 are shown in Figure 5.

### International Journal of Applied and Advanced Scientific Research

Impact Factor 5.255, Special Issue, February - 2017

International Conference on Advances in Theoretical and Applied Mathematics – ICATAM 2017
On 14th February 2017 Organized By

Madurai Sivakasi Nadars Pioneer Meenakshi Women's College, Poovanthi, Tamilnadu

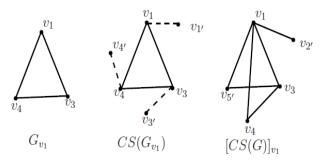


Figure 5

In this paper, we discuss about the relation between neighbourhood contraction in S(G) and CS(G) with the splitting and cosplitting graphs of the contracted graphs respectively. Also, we construct n non isomorphic graphs with isomorphic neighbourhood contracted graphs.

#### 2. Main Results:

**Proposition 2.1:** For any connected graph G,  $[S(G)]_{v_1} \ncong [S(G)]_{v_2}$ .

**Proof:** Let G be a graph and S(G) be its splitting graph. Let  $V(G) = \{v_1, v_2, ..., v_n\}$  and  $V(S(G)) = \{v_1, v_2, ..., v_n, v_1, v_2, ..., v_n\}$  be the vertex set of G and S(G) respectively. Let  $v_i$  be the corresponding newly added vertex to  $v_i$  for all  $1 \le i \le n$  in S(G).  $N(v_1) = \{v_i / d(v_1, v_i) = 1\}$ . But  $N(v_1) = \{v_i, v_i / d(v_1, v_i) = 1\}$ . Then,  $N(v_1) = N(v_1) \cup \{v_i / d(v_1, v_i) = 1\}$ . Therefore,  $N(v_1) \subseteq N(v_1)$ . Hence,  $[S(G)]_{v_1}$  has more vertices compared to  $[S(G)]_{v_1}$ . Therefore,  $[S(G)]_{v_1} \ncong [S(G)]_{v_1}$ .

Figure 6 shows the illustration of the above proposition.

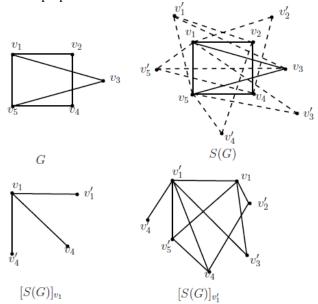


Figure 6

**Theorem 2.2:** Let G be a graph and CS(G) be its cosplitting graph. If V is a full vertex of G, then  $G \subseteq [CS(G)]_{v'}$ .

**Proof:** Let G be a graph and v be a full vertex in G. Let CS(G) be its cosplitting graph and v' be the newly added vertex in CS(G) corresponding to v in G. Since v is a full vertex in G, by definition v' is a pendant vertex in CS(G). Also,  $N_{CS(G)}(v) = N_G(v) \cup \{v'\}$ . Now in CS(G),  $N_2(v') = N_{CS(G)}(v) \setminus \{v'\} = N_G(v) \setminus v'$ . Hence  $[CS(G)]_{v'} \subseteq (CS(G)) \setminus \{v'\}$ . Since  $G \subseteq CS(G)$ , we get  $G \subseteq [CS(G)]_{v'}$ .

### International Journal of Applied and Advanced Scientific Research

Impact Factor 5.255, Special Issue, February - 2017

International Conference on Advances in Theoretical and Applied Mathematics – ICATAM 2017
On 14th February 2017 Organized By

Madurai Sivakasi Nadars Pioneer Meenakshi Women's College, Poovanthi, Tamilnadu

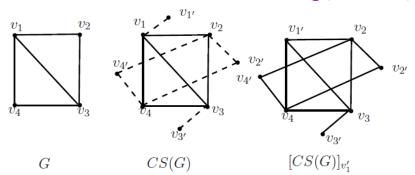


Figure 7

**Theorem 2.3:** For any graph G, there exist n graphs,  $n \ge 2$ ,  $G_1, G_2, ..., G_n$  such that G,  $G_i \not\cong G_j$  for  $i \ne j$  and  $(G_i)_v \cong (G_i)_v \cong G \lor K_1$  and  $(S_i)_v \cong (G_i)_v \cong G \lor K_1$  and  $(S_i)_v \cong (G_i)_v \cong (G_i$ 

**Proof:** Let G be any graph. Construct a graph  $H_i = G \circ K_i^c$ ,  $1 \le i \le n$ . It is obvious that  $H_i \not\cong H_j$ ,  $i \ne j, 1 \le i, j \le n$ . Now construct  $G_i$  from  $H_i$  such that  $V(G_i) = V(H_i) \cup \{v\}$ .  $E(G_i) = E(H_i) \cup \{uv/d(u) = 1 \text{ in } H_i\}$ . Since  $H_i \ncong H_j$ , it can be easily verified that  $G_i \ncong G_j$ , forall  $i \ne j$ . It is easy to note that  $I_i = I_i$  is independent in each  $I_i = I_i$ . And in  $I_i = I_i$  is easy to note that  $I_i = I_i$  is independent in each  $I_i = I_i$ . So, the vertices of  $I_i = I_i$  are all pendant vertices in  $I_i = I_i$ . Now in  $I_i = I_i$  is easy to note that  $I_i = I_i$  is independent in each  $I_i = I_i$ . So, the vertices of  $I_i = I_i$  are made adjacent to  $I_i = I_i$ . Now in  $I_i = I_i$  are made adjacent to  $I_i = I_i$  in  $I_i = I_i$ . Therefore,  $I_i = I_i$  are made adjacent to  $I_i = I_i$ . Every vertex of  $I_i = I_i$  is adjacent to a pendant vertex in  $I_i = I_i$ . Therefore,  $I_i = I_i$  is  $I_i = I_i$ . Therefore,  $I_i = I_i$  is  $I_i = I_i$ .

Figure 8 illustrates the above theorem, for the case n=2.

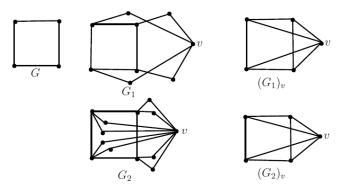


Figure 8

Note that the above constructed graph is not unique with this property. Next theorem shows another construction for n non isomorphic graphs  $G_i$  such that  $(G_i)_v \cong G \vee K_1$ , forall  $1 \leq i \leq n$  and  $(K_i)_v \otimes K_1$  is complete.

**Theorem 2.4:** For any given graph G and any positive integer n, there exists n graphs  $n \geq 2$ ,  $G_1, G_2, ..., G_n$  such that  $G_i \ncong G_j$ , for all  $i \neq j$  and  $1 \leq i, j \leq n$  and  $(G_i)_v \cong G \vee K_1$ , for all  $1 \leq i \leq n$  and  $(G_i)_v \cong G \vee K_1$ , for all  $i \leq j, 1 \leq i, j \leq n$ .

**Proof:** Let G be any graph. Construct a graph  $H_i = G \vee K_i, 1 \leq i \leq n$  with  $\{u_1, u_2, ..., u_i\}$  be the vertices of  $K_i$ . It is obvious that  $H_i \ncong H_j$ , for every  $i \neq j$ ,  $1 \leq i, j \leq n$ . Now construct  $G_i$  from  $H_i$  such that  $V(G_i) = V(H_i) \cup \{v\}$ .  $E(G_i) = E(H_i) \cup \{u_j v/1 \leq j \leq i\}$  where  $1 \leq i \leq n$ . Since  $H_i \ncong H_j$ , it can be easily verified that  $G_i \ncong G_j$ , for all  $i \neq j$ . And in  $G_i$ ,  $< N(v) > \cong K_i$ . Since  $H_i = G \vee K_i$ , no vertex of G can be a pendant vertex in  $H_i$ . So, vertices of G remain unaltered in  $(G_i)_v$ . In fact,  $(G_i)_v = G \vee K_1$ . Now note that  $\omega(G_i) = \omega(G) + i$ . Hence we get  $\omega(G_i) \leq \omega(G_j)$ , for

### International Journal of Applied and Advanced Scientific Research

Impact Factor 5.255, Special Issue, February - 2017

International Conference on Advances in Theoretical and Applied Mathematics – ICATAM 2017
On 14th February 2017 Organized By

Madurai Sivakasi Nadars Pioneer Meenakshi Women's College, Poovanthi, Tamilnadu all  $i \le j, 1 \le i, j \le n$ .

Figure 9 shows the illustration of this theorem.

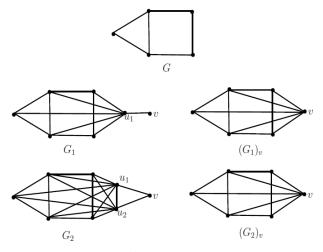
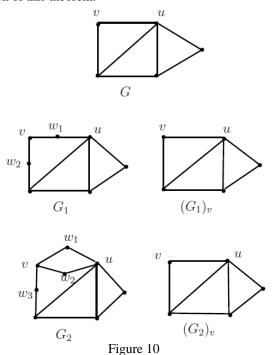


Figure 9

Also, the theorem can be extended to a method of constructing n non-isomorphic graphs which on contraction yield G itself. **Theorem 2.5:** For any given graph G, and any positive integer n, there exist n graphs  $n \ge 2$ ,  $G_1, G_2, ..., G_n$  such that  $G_i \not\cong G_j$ , forall  $i \ne j$  and  $1 \le i, j \le n$  and  $(G_i)_v \cong (G_j)_v \cong G$ .

**Proof:** Let G be a connected graph. Then there exists a vertex u in G such that  $uv \in E(G)$ . Now, construct a multigraph  $H_i$  from G by replacing uv by i multiedges,  $1 \le i \le n$ . Now, construct a simple graph  $G_i$  from  $H_i$ , such that  $V(G_i) = V(H_i) \cup \{w_1, w_2, ..., w_{d(v) + (i-1)}\}$  and  $E(G_i) = E(H_i) \cup \{vw_i, w_iu/u \in N(v)\} \setminus \{vu/u \in N(v)\}$ . Also,  $N_{G_i}(v) = \{w_j/1 \le j \le d(v) + (i-1)\}$  Hence in  $G_i$ ,  $N_2(v) = N_G(v)$ . Therefore,  $(G_i)_v \cong G$ , for all  $1 \le i \le n$ . Hence the proof. Figure 10 shows the illustration of this theorem.



**Theorem 2.6:** For any two given graphs G and H, there exist n non isomorphic graphs  $G_1, G_2, ..., G_n$  such that  $G_i \not\cong G_j$ , for all  $i \neq j$  and  $1 \leq i, j \leq n$  and  $(G_i)_v \cong G \vee K_1$ , and  $(S_i)_v \cong G \vee K_2$ , and  $(S_i)_v \cong G \vee K_3$ .

# International Journal of Applied and Advanced Scientific Research

Impact Factor 5.255, Special Issue, February - 2017

International Conference on Advances in Theoretical and Applied Mathematics – ICATAM 2017
On 14th February 2017 Organized By

### Madurai Sivakasi Nadars Pioneer Meenakshi Women's College, Poovanthi, Tamilnadu

**Proof:** Let G and H be any graph. Construct a graph  $H_i = G \circ (iH)$ ,  $1 \le i \le n$ . It is obvious that  $H_i \ncong H_j$ , for every  $i \ne j$ ,  $1 \le i, j \le n$ . Now construct a graph  $G_i$  from  $H_i$  such that  $V(G_i) = V(H_i) \cup \{v\}$  and  $E(G_i) = E(H_i) \cup \{uv/u \in H\}$ . Since  $H_i \ncong H_j$ , it can be easily verified that  $G_i \ncong G_j$ , forall  $i \ne j$ . It is easy to note that < N(v) > I if  $i \le n$ . And no vertex of G is adjacent to  $i \in G$ , so, the vertices of G remain unaltered in  $G_i$ , Now in  $G_i$ , the vertices of  $i \in G$  are deleted and the neighbours of  $i \in G$  are made adjacent to  $i \in G$ . Every vertex of G is adjacent to a copy of G. Therefore,  $G_i = I$ , G = I.

Figure 11 illustrates the above theorem for the case n = 2.

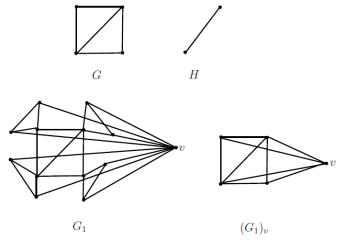


Figure 11

#### **References:**

- 1. Selvam Avadayappan, M. Bhuvaneshwari, *Co-splitting and co-regular* graphs, International Journal of Mathematics and Soft Computing, Vol.5, No.I.(2015), 57-64.
- 2. R. Balakrishnan and K. Ranganathan, A Text Book of graph theory, Springer-verlag, New York, Inc., 1999.
- 3. S.S. Kamath and Prameela Kolake, *Neighbourhood Contraction in Graphs*, Indian J.Pure Appl. Math.,47(1): 97-110, March 2016.
- 4. E. Sampath Kumar and H.B. Walikar, On the splitting graph of a graph, Karnatak Uni. Sci., 25:13,1980