ISSN: 2456 - 3080

International Journal of Applied and Advanced Scientific Research

Impact Factor 5.255, Special Issue, February - 2017

International Conference on Advances in Theoretical and Applied Mathematics – ICATAM 2017
On 14th February 2017 Organized By

Madurai Sivakasi Nadars Pioneer Meenakshi Women's College, Poovanthi, Tamilnadu

VIZING'S WEAKER CONJECTURE $(\delta, \Delta) = (7,15)$

M. Santhi* & P. Anitha**

Department of Mathematics, Hajee Karutha Rowther Howdia College, Uthamapalayam, Tamilnadu

Cite This Article: M. Santhi & P. Anitha, "Vizing's Weaker Conjecture $(\delta, \Delta) = (7,15)$ ", International Journal of Applied and Advanced Scientific Research, Special Issue, February, Page Number 94-100, 117.

Abstract:

Vizing conjectured that G is a simple and Δ -critical graph with m edges then $2m \ge \Delta^2$.—In this paper—we prove the conjecture for graphs with $\delta = 7$ and $\Delta = 15$.

Key Words: Critical Graphs & Degree Sequence

1. Introduction:

Throughout this paper, G = (V, E) is a graph with n vertices, m edges, maximum degree $\Delta(G)$, and a minimum degree $\delta(G)$. If $v \in V$, then $d_G(v)$ denotes the degree of a vertex v in G. Let n_j be the number of vertices of degree j in G. we use $\pi(G)$ to denote the valency list of G. Note that $n_j = 0$, then the factor j^{n_j} customary omitted $\pi(G)$. If S, T denotes the set of major and minor vertices in G respectively, and [S,T] denotes the set of edges in G with one end in G and the other end in G. Also [T] denotes the number of edges in G. A well known theorem of Vizing G states that: if G is a simple graph with maximum degree G, then G denotes the edge chromatic number G of G is G or G and it is said to be of class G if G is said to be degree of G. A vertical graph G with maximum degree G is called G or G or G and it is said to be of class G if G is a said to be degree of G. A vertical graph G with maximum degree G is called G or G or G or G is called G or G or G or G or G is called G or G or G or G or G is called G or G or G or G or G is called G or G or G or G or G or G or G is called G or G or

Conjecture [7]: If G is a Δ -critical graph with n vertices m edges and maximum degree Δ then $m > \frac{1}{2}(n(\Delta - 1) + 3)$. Recognizing

that conjecture is probably difficult to settle, Vizing remarks that he is enable to settle the simple problem.

Is it true if G is simple and Δ -critical then $m \ge \frac{\Delta^2}{2}$?

We refer this problem as the Vizing's weaker conjecture.

K. Kayathri[3] proved this conjecture for graphs with $2 \le \delta \le 5$.

M. Santhi [6] proved this conjecture for graphs with $\delta = 6$.

In the following results we study the structure of 15- critical graphs with $\delta = 7$ and $2m < \Delta^2$.

2. Known Results:

To prove our result, we require the following preliminary results and their consequences.

R1 [7]: Vizing's Adjacency Lemma (VAL). In a Δ - critical graph G if vw is an edge and d(v) = k, then w is adjacent with at least $\Delta - k + 1$ other vertices of degree Δ .

R2 [2]:A graph G with order 2s+1 and maximum degree 2s-1 is in class 2 iff it has size at least 2s²-s+1.

R3 [1]: A graph G with order 2s+2 and maximum degree 2s-1 is in class 2 iff q(G)- $\delta(G) \ge 2s^2 - s + 1$, where q(G) denotes the size of G.

R4 [4]: If G has order 2s and maximum degree 2s-1, then G is in class 2. If G has order 2s+1 and maximum degree2s, then G is in class 2 iff the size of G is at least $2s^2+1$.

R5 [5]: There are no critical graphs with order 2s+2 and maximum degree 2s.

R6 [6]: Let G be Δ -critical graphs with $n = \Delta + 1$ or $\Delta + 2$. Then $2m \ge \Delta^2$.

R7 [6]: Let G be Δ -critical graphs with $n = \Delta + 3$ and Δ odd. Then $2m \ge \Delta^2$.

R8 [6]: Let G be graph with $n_{\Delta} \leq \Delta + 1$. If $s(G) = n_{\Delta}(\Delta - n_{\Delta} + 1) + 2k$, then $[T] \leq k$ and

 $d(v) \le n_{\Delta} + k$ for all $v \in T$.

R9 [6]: Let G be graph with $n_{\Delta} \leq \Delta + 1$. If $s(G) = n_{\Delta}(\Delta - n_{\Delta} + 1)$ then,

$$(i) ||T|| = 0$$

ii)
$$|[S, T]| = n_{\Delta}(\Delta - n_{\Delta} + 1)$$
 and

iii) Every vertex in S has exactly $\Delta - n_{\Lambda} + 1$ neighbours in T.

ISSN: 2456 - 3080

International Journal of Applied and Advanced Scientific Research

Impact Factor 5.255, Special Issue, February - 2017

International Conference on Advances in Theoretical and Applied Mathematics – ICATAM 2017
On 14th February 2017 Organized By

Madurai Sivakasi Nadars Pioneer Meenakshi Women's College, Poovanthi, Tamilnadu

R10 [6]: Let G be Δ -critical graphs with $n_{\delta} \geq n - \delta + 2$ and $s(G) = n_{\Delta}(\Delta - n_{\Delta} + 1) + 2k$. Then [T]=k and $d(v) \leq n_{\Delta} + k$ for all $v \in T$.

R11 [6]: Let G be Δ -critical graphs with $n_{\Lambda} = \Delta - 4$ and $2m < \Delta^2$, then

i)
$$5\Delta - 20 \le s(G) < 4\Delta$$
.

ii)
$$0 \le ||T|| \le 2$$
 and

iii) s(G) and Δ are of same parity.

R12 [3]: Let G be Δ -critical graphs with $n_{\Delta} = (\Delta - \delta + 2) + l$, where $l \ge 0$. If $\Delta \ge (\delta - l - l)(\delta - 2 - l)$, then $2m \ge \Delta^2$.

If G is a Δ -critical graphs with $\delta=7$, then by VAL $n_{\Delta} \geq (\Delta-\delta+2) = \Delta-5$.

3. Theorems:

Lemma1:

Let G be a 15-critical graph with $\delta=7$ and $n_{_{\Delta}}=\Delta-3$. Then $2m\geq\Delta^2$.

Proof:

By R6 and R7 it is enough to verify the result when $n_{\Lambda} = \Delta + 4$. By VAL, $n_{\Lambda} = \Delta - \delta + 2$.

Let
$$n_{\Delta} = \Delta - \delta + 2 + l$$
 where $l \ge 0$. Now $n_{\Delta} = \Delta - 3$ and $\delta = 7$ implies that $l \ge 2$.

When
$$l \ge 3$$
, $(\delta - 1 - l)(\delta - 1 - l) = (6 - l)(5 - l)$

$$\leq 3 \times 2 = 6 < \Delta$$

and hence by R12, $2m \ge \Delta^2$. When l = 2, $(\delta - 1 - l)(\delta - 1 - l) = 4 \times 2 = 8 < \Delta$ and by R7, $2m \ge \Delta^2$ if $\Delta \ge 12$.

Since
$$n_{\Lambda} = \Delta - 3$$
, $n_{\Lambda} \ge \Delta + 3$ and $2m \ge \Delta^2$, $n_{\Lambda} + \delta(n - n_{\Lambda})$, we have

$$2m \ge (\Delta - \delta)n_{\Delta} + \delta_n$$

$$\ge (\Delta - 7)(\Delta + 3) + 7(\Delta + 4)$$

$$\ge \Delta^2 - 3\Delta + 49$$

$$\ge \Delta^2 \text{ if } \Delta \le 16$$

Hence the result.

Lemma 2:

Let G be a Δ - cricital graph with $\,\delta=7\,$, $\,n_{_\Delta}\geq \Delta+r, r\geq 3$.Then $\,2m\geq \Delta^2\,$ if $\,4\Delta\leq 28+7r$.

Proof:

$$\begin{split} 2m &\geq \Delta n_{\Delta} + 7(n - n_{\Delta}) \\ &\geq \Delta(\Delta - 4) + 7(\Delta + r - \Delta + 4) \\ &\geq \Delta^2 - 4\Delta + 28 + 7r \end{split}$$

Thus, $2m \ge \Delta^2$ if $4\Delta \le 28 + 7r$.

Lemma 3:

let G be a15-critical graph with $\delta = 7$, $\Delta = 15$ and $2m \ge \Delta^2$. Then

i)
$$n_{\Lambda} = \Delta - 4$$
 and $\Delta - 5$.

ii)
$$n_{\Lambda} = \Delta + r, r = 3,4$$

iii)
$$0 \le |[T]| \le 2$$

iv) s(G) = 55 or 57 or 59.

Proof:

i) By VAL $n_{\Lambda} \ge \Delta - \delta + 2 \ge \Delta - 5$. Also by lemma 1, when $n_{\Lambda} = \Delta - 4$ and $\Delta - 5$,

$$n_{\Lambda} < \Delta - 3$$
. Hence $n_{\Lambda} = \Delta - 4$ and $\Delta - 5$

ii) Let $n = \Delta + r$, r = 3,4. By lemma 2, $2m \ge \Delta^2$ if $4\Delta \le 28 + 7r$. Hence for 15, if,

 $r \ge 5$ we have $2m \ge \Delta^2$. Also by R6 and R7 $2m \ge \Delta^2$ if $n = \Delta + 1$ and $\Delta + 2$.

iii) By R11,
$$0 \le ||T|| \le \frac{20-5}{2}$$
 and so $0 \le ||T|| \le 2$.

iv) By R11, s(G) is odd . Also $6\Delta - 20 \le s(G) < 4s$ and so $55 \le s(G) < 60$.

Impact Factor 5.255, Special Issue, February - 2017

International Conference on Advances in Theoretical and Applied Mathematics – ICATAM 2017 On 14th February 2017 Organized By

Madurai Sivakasi Nadars Pioneer Meenakshi Women's College, Poovanthi, Tamilnadu

Lemma4:

If G is a Δ - critical graph with $\Delta = 15$, $\delta = 7$, $n = \Delta + 4$ and $n_{\Delta} = \Delta - 4$ then $2m \ge \Delta^2$.

Proof:

If possible let G be a Δ -critical graph with $\Delta = 15$, $\delta = 7$, $n = \Delta + 4$, $n_{\Delta} = \Delta - 4$ and $2m \ge \Delta^2$.

Then by R11, $55 \le s(G) < 60$ and s(G) is odd and so s(G) is 55,57 or 59.

Now
$$s(G) \ge \delta n_{\delta} + (\delta + 1)(n - n_{\Delta} - n_{\delta})\Delta$$

 $\ge (\delta + 1)(n - n_{\Delta}) - n_{\delta}$

For $1 \le n_7 \le 4$,

$$s(G) \ge (7+1)(19-11) - 4 \ge 60$$
, a contradiction.

Now for $5 \le n_7 \le 8$, the possible degree sequences of G are as follows:

- $7^5 8^3 15^{11}$
- ii) $7^6 89 15^{11}$
- iii) 7⁷ 8 15¹¹ iv) 7⁷ 10 15¹¹

In all the cases, we get a contradiction in the following Lemmas (Lemma 5 and Lemm 6). Hence the Lemma.

Lemma 5:

If G is a Δ -critical graph with $\Delta = 15$, $\delta = 7$, $n = \Delta + 4$, $n_{\Delta} = \Delta + 4$, s(G) = 57, then $2m \ge \Delta^2$.

Assume the contrary that $2m < \Delta^2$. Then the only possible degree sequence is

$$\pi(G) = 7^7 815^{11}$$
, given in Lemma 4. But by $|[T]| \le 1$. But by VAL, $|[T]| = 0$.

Now,
$$|[S, T]| = 57$$
 if $|[T]| = 0$.

Then in G, one of the following two cases arises:

- i) [T] = 0, two major vertices have 6 minor neighbours and 9 major vertices have 5 minor neighbours.
- ii) [T] = 0, one major vertex has 7 minor neighbours and 10 major vertices have 5 minor neighbours.

Now
$$\pi(G) = 7^7 815^{11}$$
.

Let v_1 be a vertex of degree 7.

Let D be a subset of $T/\{v_1\}$ with |D| = 7.

Let
$$D' = T \, / \, D$$
 . Then $\left| D' \right| = 1$ and $\, v_1 \in D' \, .$

Let
$$D = \{u_1, u_2, u_3, u_4, u_5, u_6, u_7\}$$
 and $D' = \{v_1\}$

We shall fix the degrees of u_i 's and v_i 's accordingly.

Let
$$G_1 = G/D$$
. Now $|v(G_1)| = 13$. Then $\Delta(G_1) \le 12$.

The number of vertices of degree is in G_1 . Since we have deleted 6 vertices from G and $\Delta(G) = 15$, the major vertices in G are of degree ≥ 9 in G_1 .

Hence
$$n_8' + n_9' + n_{10}' + n_{11}' + n_{12}' \ge n_A(G) = 11$$

$$|V_1| = n_8' + n_9' + n_{10}' + n_{11}' + n_{12}' \ge n_A(G) = 11$$

Moreover $v_1 \in G_1$ and $d_{G_1}(v_1) = 7$.

Let
$$V_1 = \{ v \in V(G_1) : d_{G_1}(v) \ge 8 \}$$
 and

$$v_2 = \{v \in V(G_1) : d_{G_1}(v) < 8\}.$$

Then
$$|V_1| = n_8' + n_9' + n_{10}' + n_{11}' + n_{12}' \ge n_{\Delta}(G) = 11$$
.

Let $v \in V_1$. Now for all $w \in V(G_1)$

$$d_{G_1}(v) + d_{G_1}(w) \ge 8 + 6 = 14 \ge |V(G_1)|$$
.

Impact Factor 5.255, Special Issue, February - 2017

International Conference on Advances in Theoretical and Applied Mathematics – ICATAM 2017
On 14th February 2017 Organized By

Madurai Sivakasi Nadars Pioneer Meenakshi Women's College, Poovanthi, Tamilnadu

So in the closure of $c(G_1)$, every $v \in V_1$ is adjacent with every other vertex in G_1 . Moreover for all $u \in V_2$, $d_{C(G_1)}(u) \ge \left|V_1\right| \ge n_{\Delta}(G) = 1$.

So, for every pair of vertices u and w in V_2 , $d_{C(G_1)}(u) + d_{C(G_1)}(w) \ge 11 + 11 = 22 > \left|V(G_1)\right|$

So, $c(G_1)$ is complete and hence G_1 is Hamiltonian.

Let C be a Hamiltonian cycle of G_1 .

Let
$$G' = G/E(C)$$
.

Since G is of class 2, G' is also of class 2.

Also
$$d_{G'}(u) = d_G(u)$$
 for $u \in D$ and $d_{G'}(v) = d_G(v) - 2$ (1)

In particular $d_{G'}(v_1) = 5$ and so $\delta(G_1) = 5$. Also $\Delta(G') = \Delta(G) - 2 = 13$

Let H be a 13-critical subgraph of G'.

Let h_i" denote the number of vertices of degree is in H.

Let S', T' respectively denote the set of major and minor vertices in H.

We have
$$|S'| \le n_{\Delta}(G) = 11$$
. By VAL, $n_{\Delta} \ge \Delta - S + 2$

We have
$$\delta(H) \ge \Delta(H) - |S'| + 2$$

$$\geq 13 - 11 + 2$$

Now |S'| = 11. Note that $d_H(v_i) = 5$ and so v_1 has 5 major neighbourhood in cases (i) and (ii)

Then in (i),
$$|[S', T']| \le (5 \times 4) + (4 \times 5) + (2 \times 6) = 52$$

in (ii), $|[S', T']| \le (5 \times 4) + (5 \times 5) + (1 \times 7) = 52$ (2)

Since $\delta(H) = 5$, it follows that $H = G'/E_1$,

where $\mathbf{E_1} \subseteq [T]_{G'}$, and no edge in E_1 is incident with vertices of degree 13 or 4. While removing C from G, we have removed only two edges from [T, S] (two edges incident with one minor vertex in D).

So
$$s(G') = s(G) - (1 \times 2)$$

$$= 57 - 2 = 55$$

Then
$$s(H) \ge s(G') - 2|E_1|$$
.

Now,
$$|[S', T']| = s(H) - 2|[T']|$$

$$=55-2(|E_1|+|[T']|)$$

 $\geq 55 - 2 \geq 53$ contradicting (2)

δ(H)≥6

Now $n_5(H) = 0$

$$n_5(H) = 0 \Rightarrow H \subseteq G'/v_1$$
 (where $d(v_i) = 5$)
 $\Rightarrow |S'| \le 11 - 4 = 7$ (since v_1 has at least 4 major neighbours in G')
 $\Rightarrow \delta(H) \ge 8$ (using VAL) (3)

Let u_1 be a vertex of degree 7 that has only major neighbours in G.

Then
$$d_{G'}(u_1) = 7$$

Now by (3), $\delta(H) \ge 8$

Impact Factor 5.255, Special Issue, February - 2017

International Conference on Advances in Theoretical and Applied Mathematics - ICATAM 2017 On 14th February 2017 Organized By

Madurai Sivakasi Nadars Pioneer Meenakshi Women's College, Poovanthi, Tamilnadu

$$\delta(H) \ge 8 \Rightarrow H \subseteq G'/u_1$$
$$\Rightarrow |S'| \le 11 - 7 = 4$$
$$\Rightarrow 11$$

We note that $n_{10} + n_{11} = 0$ in G.

Hence
$$n_8'' + n_9'' \le n_{10} + n_{11} + n_{12} + n_{13} + n_{14} + n_{15} = 11$$

So,
$$|V(H)| \le 11$$
 is a contradiction.

This completes the proof.

Lemma 6:

If G is an 1-critical graph with $\Delta = 15, \delta = 7$, $n = \Delta + 4$, $n_{\Lambda} = \Delta - 4$ and s(G) = 59, then $2m \ge \Delta^2$.

Proof:

Assume the contrary that $2m < \Delta^2$. Then the possible degree sequences are

$$i)7^5 8^3 15^1$$

By **R[8]**, $||T|| \le 2$. But by VAL, $||T|| \le 1$

Now
$$|[S,T]| = \begin{cases} 59, & \text{if } |[T]| = 0 \\ 57, & \text{if } |[T]| = 1 \end{cases}$$

Then in G, one of the following five cases arises:

- [T] = 0, four major vertices have 6 minor neighbours and seven major vertices have 5 minor neighbours.
- ||T|| = 0, two major vertices have 6 minor neighbours and one major vertex have seven minor neighbours and 8 major vertices have 5 minor neighbours.
- iii) [T] = 0, two major vertices have 7 minor neighbours and nine major vertices have 5 minor neighbours.
- iv) ||T|| = 1, two major vertices have 6 minor neighbours and nine major vertices have 5 minor neighbours.
- v) [T] = 0, one major vertex has 7 minor neighbours and two major vertices have 5 minor neighbours and 8 major vertices have 5 minor neighbours.

Also $d(v) \le n_{\Lambda} + 1 = 12$ for all $v \in T$.

Let
$$\pi(G) = \begin{cases} 7^5 \ 8^3 \ 15^{11} \\ 7^6 \ 89 \ 15^{11} \\ 7^7 \ 10 \ 15^{11} \end{cases}$$

Let V_1 be a vertex of degree 7.

Let D be a subset of $T/\{v_1\}$ with |D| = 6.

Let
$$D' = T/D$$
. Then $|D'| = 2$ and $v_1 \in D'$.

Let
$$D = \{u_1, u_2, u_3, u_4, u_5, u_6\}$$
 and $D' = \{v_1, v_2\}$.

We shall fix the degree of ui's, vi's accordingly.

Let
$$G_1 = G/D$$
.

Now
$$|V(G_1)| = 13$$
. Then $\Delta(G_1) \le 12$.

Since
$$\delta(G) = 7$$
 and $|[T]| \le 1$, we have $\delta(G_1) = 6$.

Let
$$V_1 = \{ v \in V(G_1) : d_{G_1}(v) \ge 9 \},$$

$$V_2 = \{ v \in V(G_1) : d_{G_1}(v) < 9 \}.$$

As in lemma 6, we can check that G_1 is hamiltonian.

Let c be a hamitonian cycle of G_1 .

Impact Factor 5.255, Special Issue, February - 2017

International Conference on Advances in Theoretical and Applied Mathematics – ICATAM 2017
On 14th February 2017 Organized By

Madurai Sivakasi Nadars Pioneer Meenakshi Women's College, Poovanthi, Tamilnadu

Let G' = G/E(C).

Since G is of class 2, G' is of class 2.

Let S', T' be defined as in lemma 6.

Then $|S'| \le 11$ and $\delta(H) \ge 4$.

 $\delta(H)=5$

Now |S'| = 11

Then V(H) = V(G') and $d_H(v_1) = 5$..

Now we consider the cases (i) to (v).

Note that $d_H(v_1) = 5$. And so in H, V_1 has 4 major neighbourhood in case (i) and (iii) and has at least 3 major neighbourhood in cases (iv) and (v).

Then in (i) $[S',T'] \le (4\times3) + (4\times6) + (3\times5) = 51$.

(ii)
$$[S',T'] \le (4\times3) + (2\times6) + (1\times7) + (4\times5) = 51$$
,

(iii)
$$|[S',T']| \le (4\times3) + (2\times7) + (5\times5) = 51$$
,

(iv)
$$||S',T'|| \le (3\times3) + (2\times6) + (6\times5) = 51$$
,

(v)
$$||S',T'|| \le (3\times3) + (1\times7) + (7\times5) = 51.$$
 (1)

But in all cases,

$$s(G') = s(G) - (2 \times 2)$$

$$= 59 - 4 = 55$$

Also $\delta(H) = 5$ and so $H = G'/E_1$, where $E_1 \subseteq [T]_{G'}$, and no edge in E_1 is incident with vertices of degree 13 or 5 (Then $|E_1| \le 1$).

Now in
$$|[T'] + |E_1| = |[T]_{G'}| \le 1$$

Then
$$s(H) = s(G') - 2|E_1|$$

= 55 - 2|E_1|

Now in (i) – (iii),
$$H = G'$$
 and $||T',S'| = 55$

In (iv) and (v)
$$||T', S'|| \ge 55 - 2 = 53$$
 contradicting to (1)

δ(H)≥6

Then $H \subseteq G'/v_1$ where $d(v_1)=5$

Now $n_5(H) = 0 \Rightarrow |S'| \le 11 - 3 = 8$ (since v_1 has at least 3 major nrighbours in G).

$$\Rightarrow \delta(H) \ge 7$$
 (using VAL)

Now we have three possible degree sequences:

- i) $7^6 89 15^{11}$
- ii) $7^5 8^4 5^{11}$
- iii) 7^7 10 15^{11}

Let
$$d(v_2) = \begin{cases} 8 & \text{in (i) and (ii)} \\ 10 & \text{in (iii)} \end{cases}$$

Then
$$d_{G'}(v_2) = \begin{cases} 6 & \text{in (i) and (ii)} \\ 8 & \text{in (iii)} \end{cases}$$

Also by VAL, v₂ has at most one minor neighbours in G.

ISSN: 2456 - 3080

International Journal of Applied and Advanced Scientific Research

Impact Factor 5.255, Special Issue, February - 2017

International Conference on Advances in Theoretical and Applied Mathematics – ICATAM 2017
On 14th February 2017 Organized By

Madurai Sivakasi Nadars Pioneer Meenakshi Women's College, Poovanthi, Tamilnadu

$$\begin{split} \delta(H) &\geq 7 \Rightarrow H \subseteq G'/v_2 \\ &\Rightarrow |\mathbf{S}'| \leq \begin{cases} 11 - 5 & \text{in (i) and (ii)} \\ 11 - 7 & \text{in (iii)} \end{cases} \\ &\Rightarrow |\mathbf{S}'| \leq \begin{cases} 6 & \text{in (i) and (ii)} \\ 4 & \text{in (iii)} \end{cases} \\ &\Rightarrow \delta(H) \geq \begin{cases} 9 & \text{in (i) and (ii)} \\ 11 & \text{in (iii)} \end{cases} \\ &\Rightarrow |\delta(\mathbf{H})| \leq 11, \text{ a contradiction.} \end{split}$$

This completes the proof.

Theorem 1:

If G is a 15-critical graph with $\delta = 7$ and $n_{\Lambda} = \Delta - 4$, then $2m \ge \Delta^2$.

Proof:

By Lemma 5 and Lemma 6, we get the result.

Theorem 2:

If G is a 15-critical graph with $\delta = 7$ and $n_{\Lambda} = \Delta - 5$, then $2m \ge \Delta^2$.

Proof:

By R11, $55 \le s(G) < 60$ and s(G) is odd and so s(G) is 55 or 57 or 59.

Since $n_{\Delta} = (\Delta - 5, n_{\Delta} = 11)$ is odd and also s(G) is odd, in the possible degree sequences the number of odd vertices is odd. It is impossible.

Hence the theorem.

Proof of the Main Theorem:

Theorem 3:

If G is a 15-critical graph with $\delta = 7$ then $2m \ge \Delta^2$.

Proof:

By VAL,
$$n_{\Lambda} \ge \Delta - 5 + 2 \ge \Delta - 5$$
.

By R6, R7 and lemma 1, it is enough to verify the result when $n_{\Lambda} \ge \Delta + 4$ and $n_{\Lambda} = \Delta - 4$ and $\Delta - 5$.

By Theorem 1 and 2, the main theorem follows.

References:

- 1. G. Chetwynd and A. J. W. Hilton: "The chromatic index of even order with many edges", j.Graph theory 8(1984), 463-470.
- 2. G. Chetwynd and A. J. W. Hilton: "Partial edge Colourings of graphs which are nearly complete", Graph Theory and combinatorics (Ed.B.Ballobas), Academic press, London (1984), 81-97.
- 3. K. Kayathri: "Chromatic numbers of Graphs", Ph.D., Thesis, Madurai Kamaraj University (1996)
- 4. M. Plantholt: "The Chromatic index of Graph with a spanning star", J.Graph Theory 5 (1981, 5-13)
- 5. M. Plantholt: "The Chromatic index of Graph with large maximum degree", Discrete Math, 47 (1983), 91-96.
- 6. M. Santhi: "Coloring of Graphs", Ph.D., Thesis, Madurai Kamaraj University (2008)
- 7. V. G. Vizing: "Critical graphs with given chromatic class" (Russian), Diskret Analiz, 5 (1965) 9-17.
- 8. V. G. Vizing: "Some unsolved problems in Graph Theory", Uaspekhi Mat, Nauk 23 (1968) 117-134, Russian math. Surveys 23 (1968) 125-142